Moderator System

A neutron walks into a bar

D₂O Isotopic

Percentage of D₂O by weight

Isotopic = $\frac{\text{Mass of } D_2 O}{\text{Mass of } D_2 0 + \text{mass of } H_2 O} \times 100\%$

Moderator water ≈ 99.8% Typically 99.93%
New water as high as 99.99%
0.1% downgrading costs a million a year in fuel
Minimum allowable ≈ 99.5%
Up-graders in stations keep isotopic high

Radiation Hazards

Tritium

- activation product from deuterium
- low energy beta emitter
- internal hazard only
- detected by routine bioassay
- N-16 & O-19
 - high energy gamma and beta
 - gamma hazard when reactor is in operation
- Photoneutrons
 - anywhere there is heavy water that just circulated through the reactor

Main Moderator System

- Constant moderator temperature – 60°C - 70 °C
- Moderator Heat Sources
 - prompt radiation from fission (neutrons & gamma)
 - fission product decay (gamma)
 - conventional heating

Simplified Main Moderator System

Main Moderator System

Moderator System Layout

Moderator Auxiliaries

13 February, 2004

Auxiliary Systems

Purification

Liquid Poison Addition

Liquid Poison Addition

More Moderator Stuff

D₂0 collection
 Auxiliary Cooling

 reactivity mechanisms

 Deuteration and De-Deuteration